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Abstract
We study the problem of adsorption of self-interacting linear polymers situated
in fractal containers that belong to the three-dimensional (3D) Sierpinski gasket
(SG) family of fractals. Each member of the 3D SG fractal family has a fractal
impenetrable 2D adsorbing surface (which is, in fact, 2D SG fractal) and can be
labelled by an integer b (2 � b � ∞). By applying the exact and Monte Carlo
renormalization group (MCRG) method, we calculate the critical exponents
ν (associated with the mean-squared end-to-end distance of polymers) and φ

(associated with the number of adsorbed monomers), for a sequence of fractals
with 2 � b � 4 (exactly) and 2 � b � 40 (Monte Carlo). We find that both
ν and φ monotonically decrease with increasing b (that is, with increase of the
container fractal dimension df ), and the interesting fact that both functions,
ν(b) and φ(b), cross the estimated Euclidean values. Besides, we establish
the phase diagrams, for fractals with b = 3 and b = 4, which reveal the
existence of six different phases that merge together at a multi-critical point,
whose nature depends on the value of the monomer energy in the layer adjacent
to the adsorbing surface.

PACS numbers: 64.60.−i, 36.20.−r, 05.50.+q

1. Introduction

The statistics of a polymer chain in various types of solvents near an impenetrable wall
(boundary) with short-range attractive forces have been extensively studied because of its
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practical importance [1], and as a challenging problem within the modern theory of critical
phenomena [2]. The most frequently applied model for a polymer chain has been the self-
avoiding (SAW) random walk model (that is, the walk without self-intersections), so that
steps of the walk have been identified with monomers that comprise the polymer, while
the solvent surrounding has been represented by a lattice. These problems have been
mostly studied for models situated on two-dimensional (2D) Euclidean lattices using various
theoretical methods, such as the series expansion method, the renormalization group (RG)
techniques, the mean-field approach, Monte Carlo simulations and the conformal invariance
method. In the last two decades these problems have also been studied in the case of
fractal lattices embedded in the two-dimensional Euclidean space. On the other hand, in
a more realistic three-dimensional case (for the Euclidean lattices, as well as for fractal
lattices), a smaller number of results have been obtained. The study of fractal lattices has an
advantage not only because their intrinsic self-similarity makes the problem more amenable
to an exact approach, but also because these lattices as such may serve to model porous
media.

In this paper, we report results of our study of a linear polymer situated in the
three-dimensional (3D) fractal lattices that belong to the Sierpinski gasket (SG) family
of fractals, assuming interaction between two adjacent nonconsecutive monomers and, in
addition, assuming adsorbing interaction with the walls of the fractal interior. This problem
has been studied in the case of the 3D Euclidean lattices (see, for instance, [3], and
references quoted therein), but the number of results obtained is definitely smaller than
in the corresponding 2D case. In the 3D case, the main endeavour has been to establish
phase diagrams [3, 4] in the interaction parameter space (which consists of the monomer–
monomer interaction parameter and the adsorption energy parameter). In addition to the
phase diagram, attempts have been made to calculate critical exponents that characterize
various polymer configurations. The first work of this kind for a fractal was done by
Bouchaud and Vannimenus [5], who applied the renormalization group technique for the
3D SG with scale parameter b = 2. Here we report results of our exact RG calculation
for the 3D SG with b = 3 and b = 4, and our results for the sequence 2 � b � 40
obtained via the Monte Carlo renormalization group (MCRG) method. Therefore, this paper
appears to reflect an effort to extend our previous studies performed in the case of the two-
dimensional fractal lattices. Such an effort has been motivated by the well-known fact that
critical properties of a given model depend on the dimension of the space in which the model
is situated.

This paper is organized as follows. In section 2, we first describe the 3D SG
fractals for general b. Then, we present the framework of the RG method for studying
the polymer adsorption problem on these fractals (taking into account the presence of
the monomer–monomer interaction), in a way that should make the method transparent
for exact calculations, as well as for the Monte Carlo calculations. In section 3, we
elaborate on the phase diagrams obtained through the exact RG analysis for the b = 3
and b = 4 SG fractals, and, in addition, we display our findings for the concomitant
critical exponents ν (associated with the mean-squared end-to-end distances of polymers)
and φ (associated with the number of adsorbed monomers). For b = 3, values of ν, for
different phases, have been previously calculated [6], so that here we report the values for
the corresponding crossover exponent φ, whereas in the b = 4 case we had to calculate
values for both exponents ν and φ. In section 4, we explain details of the MCRG
calculations of the critical exponents, for arbitrary b, and present their specific values up
to b = 40. Summary of the obtained results and the relevant conclusions are given in
section 5.
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Figure 1. The first two steps (r = 1 and r = 2) of the self-similar construction of the 3D SG
fractals, in the case b = 4.

2. Renormalization group scheme

Each member of the 3D SG family of fractals is labelled by the scale parameter b = 2, 3, 4, . . . ,

and can be constructed recursively starting with the pertinent generator G(1)(b) which is a
tetrahedron of base b, that contains b(b + 1)(b + 2)/6 unit tetrahedrons (see figure 1). The
subsequent fractal stages are constructed self-similarly, by replacing each unit tetrahedron of
the initial generator by a new generator. Thus, to obtain the rth-stage fractal lattice G(r)(b),
which we shall call the rth order generator, the recursive process has to be repeated (r − 1)

times, so that the complete fractal is obtained in the limit r → ∞. Fractal dimension df of
the 3D SG fractal is equal to

d3D
f = ln[(b + 2)(b + 1)b/6]/ln b. (2.1)

We assume here that one of the four boundaries of the SG fractal is an impenetrable attractive
surface (wall), which is itself a 2D SG fractal with the fractal dimension

d2D
f = ln[b(b + 1)/2]/ ln b. (2.2)

In order to describe both the effect of monomer–monomer interaction and the effect
of an attractive (adsorbing) surface, one should introduce the three Boltzmann factors:
v = e−εv/kBT , w = e−εw/kBT and t = e−εt /kBT , where εv is the energy corresponding to
the interaction between two nonconsecutive neighbouring monomers, εw is the energy of a
monomer lying on the adsorbing surface and εt is the energy of a monomer in the layer
adjacent to the surface (see figure 2). If we assign the weight x to a single step of the SAW
walker, then the weight of a walk having N steps, with P nearest neighbour contacts, M steps
on the surface and K steps in the layer adjacent to the surface, is xNvP wMtK . An arbitrary
SAW configuration can be described, following [5], by using the five restricted generating
functions (see figure 3). For G(r)(b), the generating functions, in terms of the interaction
parameters, have the form

A(r)(x, v) =
∑
N,P

A(r)(N, P )xNvP (2.3)

B(r)(x, v) =
∑
N,P

B(r)(N, P )xNvP (2.4)

A
(r)

1 (x, v,w, t) =
∑

N,P,M,K

A(r)

1 (N, P,M,K)xNvP wMtK (2.5)
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tx
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Figure 2. The fractal structure of the b = 2 3D SG fractal at the first stage of construction,
with an example of the SAW path. The shaded area in the base of the tetrahedron represents the
adsorption wall. The steps on the adsorbing wall and in the adjacent layer are weighted by the
factors w = e−εw/T and t = e−εt /T , respectively. Here εw is the energy of a monomer lying on
the adsorbing wall (εw < 0), and εt > 0 is the energy of a monomer that appears in the layer
adjacent to the wall. The Boltzmann factor v = e−εv/T corresponds to the energy of interaction
εv < 0 between two nonconsecutive neighbouring monomers. The depicted SAW path represents
one term in equation (2.5) for r = 1 with N = 5, P = 4, M = 1 and K = 2.

A(r)
1A(r) A(r)

2

1B(r)B(r)

Figure 3. Schematic representation of the five restricted generating functions used in describing all
possible polymer configurations within the rth-stage 3D SG fractal structure. Thus, for example,
A

(r)
1 represents the SAW paths that start at one tetrahedron vertex that lies on the adsorption wall,

and exit at the other vertex that also lies on the adsorption wall. The interior details of the rth order
fractal structure are not shown (they are manifested by the wiggles of the SAW paths).

A
(r)

2 (x, v,w, t) =
∑

N,P,M,K

A(r)

2 (N, P,M,K)xNvP wMtK (2.6)

B
(r)
1 (x, v,w, t) =

∑
N,P,M,K

B(r)
1 (N, P,M,K)xNvP wMtK (2.7)

where the coefficients have the following meanings:

• A(r)(N, P ) is the number of N-step SAWs, lying completely in the bulk, with P nearest
neighbour contacts, and entering G(r)(b) through one corner vertex, and leaving it via a
second corner vertex,

• B(r)(N, P ) is the number of N-step SAWs, traversing the G(r)(b) twice, in the bulk, with
P nearest neighbour contacts,

• A(r)
1 (N, P,M,K)

(
A(r)

2 (N, P,M,K)
)

is the number of N-step SAWs entering the G(r)(b)

through a corner vertex lying on the adsorbing surface, and leaving it via a second corner
vertex on the surface (in the bulk, in the case of A(r)

2 (N, P,M,K)), with P nearest
neighbour contacts, M steps in the surface and K steps in the layer adjacent to the surface
(see figure 2), and, finally,
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• B(r)
1 (N, P,M,K) is the number of N-step SAWs going twice through the G(r)(b), with

P nearest neighbour contacts, M steps in the surface and K steps in the layer adjacent to
the surface.

These generating functions (depicted in figure 3) are parameters in the renormalization group
approach, and for any b � 2, RG equations have the form

A(r+1) =
∑

NA,NB

a(NA,NB)ANABNB (2.8)

B(r+1) =
∑

NA,NB

b(NA,NB)ANABNB (2.9)

A
(r+1)

1 =
∑

NA,NB,NA1 ,NA2 ,NB1

a1
(
NA,NB,NA1 , NA2 , NB1

)
ANABNB A

NA1
1 A

NA2
2 B

NB1
1 (2.10)

A
(r+1)
2 =

∑
NA,NB,NA1 ,NA2 ,NB1

a2
(
NA,NB,NA1 , NA2 , NB1

)
ANABNB A

NA1
1 A

NA2
2 B

NB1
1 (2.11)

B
(r+1)
1 =

∑
NA,NB ,NA1 ,NA2 ,NB1

b1
(
NA,NB,NA1 , NA2 , NB1

)
ANABNB A

NA1
1 A

NA2
2 B

NB1
1 (2.12)

where we have omitted the superscript (r) on the right-hand side of the above relations.
The self-similarity of the fractals under study implies that numbers a(NA,NB), b(NA,NB),

a1
(
NA,NB,NA1 , NA2 , NB1

)
, a2

(
NA,NB,NA1 , NA2 , NB1

)
and b1

(
NA,NB,NA1 , NA2 , NB1

)
of

the corresponding SAW configurations within the G(r+1)(b) structure do not depend on r.
Starting with the initial conditions

A(0)(x, v) = x + 2x2v + 2x3v3

B(0)(x, v) = x2v4

A
(0)
1 (x, v,w, t) = wx + (w2 + t2)x2v + 2wt2x3v3 (2.13)

A
(0)

2 (x, v,w, t) = tx + 2twx2v + 2tw2x3v3

B
(0)
1 (x, v,w, t) = wtx2v4

which correspond to the elementary tetrahedron G(0)(b), one can iterate the RG relations
(2.8)–(2.12) for various values of interactions v,w and t, and explore the phase diagram.
This approach (which implies that interactions are restricted to sites within the elementary
tetrahedron G(0) and, moreover, that SAW exits G(r) whenever it reaches its corner vertex [7])
was applied in [5] for the 3D b = 2 SG fractal. Here we present an analogous type of analysis
for the larger b cases.

The average number of monomers in contact with the adsorption wall, for SAW spanning
a G(r)(b), can be expressed in terms of the partial derivatives of the generating functions A

(r)
1

and A
(r)

2 :

〈M(r)〉 =
∑

N,P,M,K M
(
A(r)

1 (N, P,M,K) + A(r)
2 (N, P,M,K)

)
xNvP wMtK

A
(r)

1 + A
(r)

2

= w

A
(r)
1 + A

(r)
2

(
∂A

(r)

1

∂w
+

∂A
(r)

2

∂w

)
= w

A
(r)
1 + A

(r)
2

(
A

(r)

1,w + A
(r)

2,w

)
(2.14)
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whereas the total average number of monomers can be expressed in the form

〈N(r)〉 =
∑

N,P,M,K N
(
A(r)

1 (N, P,M,K) + A(r)
2 (N, P,M,K)

)
xNvP wMtK

A
(r)

1 + A
(r)

2

= x

A
(r)
1 + A

(r)
2

(
∂A

(r)

1

∂x
+

∂A
(r)

2

∂x

)
= x

A
(r)
1 + A

(r)
2

(
A

(r)

1,x + A
(r)

2,x

)
. (2.15)

From the RG equations (2.8)–(2.12) one can obtain recursion relations for the derivatives of
the generating functions in the following matrix form:


A′

1,w

A′
2,w

B ′
1,w


 = RS


A1,w

A2,w

B1,w







A′
x

B ′
x

A′
1,x

A′
2,x

B ′
1,x


 = R




Ax

Bx

A1,x

A2,x

B1,x


 (2.16)

where the matrices RS and R comprise the partial derivatives of generating functions
A′, B ′, A′

1, A
′
2 and B ′

1, corresponding to SAWs spanning the generator G(r+1)(b), with respect
to generating functions A,B,A1, A2 and B1, corresponding to G(r)(b):

RS =




∂A′
1

∂A1

∂A′
1

∂A2

∂A′
1

∂B1

∂A′
2

∂A1

∂A′
2

∂A2

∂A′
2

∂B1

∂B ′
1

∂A1

∂B ′
1

∂A2

∂B ′
1

∂B1


 R =




∂A′
∂A

∂A′
∂B

0 0 0
∂B ′
∂A

∂B ′
∂B

0 0 0
∂A′

1
∂A

∂A′
1

∂B

∂A′
1

∂A1

∂A′
1

∂A2

∂A′
1

∂B1

∂A′
2

∂A

∂A′
2

∂B

∂A′
2

∂A1

∂A′
2

∂A2

∂A′
2

∂B1

∂B ′
1

∂A

∂B ′
1

∂B

∂B ′
1

∂A1

∂B ′
1

∂A2

∂B ′
1

∂B1




.

Starting with the initial conditions for the derivatives

∂A(0)

∂x
= 1 + 2xv + 6x2v3 ∂B(0)

∂x
= 2xv4

∂A
(0)

1

∂x
= w + 2(w2 + t2)xv + 6wt2x2v3 ∂A

(0)

2

∂x
= t + 4twxv + 6tw2x2v3

∂B
(0)

1

∂x
= 2wtxv4 ∂A

(0)

1

∂w
= x + 2wx2v + 2t2x3v3

∂A
(0)
2

∂w
= 2tvx2 + 4twx3v3 ∂B

(0)
1

∂w
= tx2v4

(2.17)

and iterating recursion equations (2.16), it is possible to establish the relation between the
average number of adsorbed monomers 〈M(r)〉 (2.14) and the average length of the polymer
chain 〈N(r)〉 (2.15) in the limit r → ∞, for various values of the interaction parameters v,w,
and t.

3. Exact approach: phase diagram and critical exponents

To solve exactly the adsorption problem of a self-interacting SAW for an arbitrary member
(for any b � 2) of the 3D SG family, it is necessary to find all coefficients that appear in the set
(2.8)–(2.12) of the RG equations. The b = 2 case has been completely analysed in [5], while
in the b = 3 and b = 4 cases only the bulk RG equations (2.8) and (2.9) have been studied, in
[6] and [8] respectively. In this paper, we make a complete analysis of the b = 3 and b = 4
cases, that is, including the adsorption RG equations (2.10)–(2.12).
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3.1. The b = 3 SG fractal

The RG equations (2.8) and (2.9) for the bulk parameters A and B, found in [6] for the case of
the b = 3 SG fractal, have the form

A(r+1) = A3 + 6A4 + 16A5 + 34A6 + 76A7 + 112A8 + 112A9 + 64A10 + 8A4B

+ 36A5B + 140A6B + 292A7B + 424A8B + 332A9B + 12A3B2 + 12A4B2

+ 118A5B2 + 380A6B2 + 806A7B2 + 664A8B2 + 72A4B3 + 352A5B3

+ 704A6B3 + 1728A7B3 + 344A4B4 + 1568A5B4 + 848A6B4

+ 264A4B5 + 3192A5B5 + 320A3B6 (3.1)

B(r+1) = A6 + 12A7 + 40A8 + 60A9 + 32A10 + 28A6B + 88A7B + 224A8B

+ 160A9B + 40A6B2 + 496A7B2 + 596A8B2 + 176A5B3 + 768A6B3

+ 1056A7B3 + 88A3B4 + 264A5B4 + 2534A6B4 + 1152A4B5

+ 1888A5B5 + 5808A4B6 + 1936A3B7 + 4308A2B8. (3.2)

Here we give a summary of the analysis of the above set of equations. For small values
of the monomer–monomer interaction (v < vθ ), the extended SAW phase fixed point
(AE,BE) = (0.341 96, 0.023 95) is reached through the RG transformations. Linearization
of the RG equations in the vicinity of this fixed point gives only one relevant eigenvalue
λE

ν = 5.362 01. The mean-squared end-to-end distance
〈
R2

N

〉
of the N-step polymer chain, in

the general case, behaves asymptotically (for N � 1) as〈
R2

N

〉 ∼ N2ν (3.3)

where the critical exponent ν is given by

ν = ln b

ln λν

(3.4)

which for b = 3 gives νE = 0.6542. Starting with v = vθ , the RG equations lead to the
fixed point (Aθ, Bθ ) = (0.207 17, 0.430 75), for which both eigenvalues λθ

ν = 8.723 08 and
λθ

α = 2.450 12 are relevant. At this fixed point critical exponent νθ = ln 3/ln λθ
ν = 0.5072 is

smaller than νE , which is the manifestation of the so-called collapse transition. At the collapse
transition, the free energy per site f behaves as

f ∼ |v − vθ |2−α (3.5)

where the critical exponent α in the general case is given by

α = 2 − ln λθ
ν

ln λθ
α

(3.6)

and in this specific case it is negative, α = −0.4170. Depending on the value of the
one-step weight (fugacity) x, for strong monomer–monomer interactions (v > vθ ) RG
equations (3.1) and (3.2) bring about the trivial fixed point (A,B)∗ = (0, 0), for x < x∗(v),
or (A,B)∗ = (∞,∞) for x > x∗(v), whereas for x precisely equal to x∗(v), the fixed point
(AG,BG) = (0,∞) is reached. Analysing the RG equations in the vicinity of (AG,BG),
by keeping only the dominant terms on the right-hand side of (3.1) and (3.2), one can find
νG = 0.481 95. Since the fractal dimension d

poly
f = 1/νG = 2.074 91 of the SAW in this

case is larger than the fractal dimension of the extended SAW (for v � vθ ), but still less than
the fractal dimension of the underlying lattice df = 2.095 90, one can conclude that the fixed
point (0,∞) corresponds to the ‘semi-compact’ phase [6]. This finding is in contrast to the
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results obtained for polymers on homogeneous lattices and on the b = 2 3D SG fractal lattice
[7], where one finds d

poly
f = df .

In order to establish the specific form of the complete set of the exact RG equations (2.8)–
(2.12), required for the study of the adsorption problem on the b = 3 SG fractal, we have
enumerated the requisite SAW configurations, achieving thereby the pertinent RG coefficients.
This procedure is rather complex, as well as the corresponding set of coefficients, and for this
reason we give them in appendix A. The physical picture that follows from these RG equations,
for various values of the interaction parameters (v, t and w), is unusually rich and we present
it in what follows.

Numerical study of the adsorption RG equations (given in appendix A) shows that for
w > 1 (attractive surface) an unbinding transition appears at a finite temperature only if
t < 1 (repulsive interaction in the layer adjacent to the surface). The nature of this transition
depends on the value of the monomer–monomer interaction v. This situation is analogous to
the previously studied cases of the two-dimensional and three-dimensional b = 2 Sierpinski
gasket fractals [5], but new physical features do appear.

3.1.1. Extended SAW phase. For the chosen initial conditions (2.13) we found the critical
value of monomer–monomer interactions vθ = 2.446 161 (which is different from the value
found in [6], because of the slightly different initial conditions, but which does not affect
the overall critical behaviour). For weak monomer–monomer interactions v < vθ , and the
corresponding critical fugacity x = x∗(v), the RG equations (3.1) and (3.2) for the bulk
parameters A and B iterate towards the fixed point (AE,BE).

Behaviour of surface RG parameters
(
A

(r)

1 , A
(r)

2 , B
(r)

1

)
depends primarily on the

corresponding interaction parameter w. Thus, for weak interactions w < wc(t, v), and
x = x∗(v), the parameters

(
A

(r)

1 , A
(r)

2 , B
(r)

1

)
tend to (0, 0, 0), when r → ∞, which indicates

that the polymer, being in the extended coil phase, stays away from the attractive surface. We
shall refer to this state as the desorbed extended (DE) phase, determined by the RG fixed point

(A,B,A1, A2, B1)
∗ = (AE,BE, 0, 0, 0). (3.7)

This behaviour changes abruptly at w = wc(t, v), where A
(r)

1 , A
(r)

2 → AE and B
(r)

1 → BE .
The new behaviour is described by the new fixed point

(A,B,A1, A2, B1)
∗ = (AE,BE,AE,AE,BE) (3.8)

which is the symmetric special fixed point, that corresponds to the unbinding transition of
the SAW. If w is increased beyond wc(t, v), and for the fugacity equal to x = x∗(v), bulk
parameters still approach (AE,BE), but the surface RG parameters diverge, implying that
critical fugacity xc is smaller than x∗(v). A thorough analysis shows that xc depends on the
values of v,w and t, whereas the RG parameters flow towards the new fixed point

(A,B,A1, A2, B1)
∗ = (

0, 0, A2D
E , 0, 0

)
(3.9)

where A2D
E = 0.551 147 is the fixed point for the b = 3 two-dimensional SG fractal (see

[9]), meaning that for a strongly attractive surface the polymer remains adsorbed (this is the
adsorbed SAW phase).

At the symmetric special fixed point (3.8) linearized RG equations have two relevant
eigenvalues: the larger λE

ν = 5.362 01, already found for the bulk RG equations, and the
smaller λE

S = 3.329 23. The matrix of the linearized RG equations is equal to the matrix R in
(2.16), which means that

〈N(r)〉 ∼ (
λE

ν

)r
for r � 1 (3.10)



Adsorption of self-interacting polymers on fractals 1221

whereas the largest eigenvalue of the matrix RS in (2.16) is equal to λE
S , meaning that

〈M(r)〉 ∼ (
λE

S

)r
for r � 1. (3.11)

Consequently, for r → ∞, it follows

〈M(r)〉 ∼ 〈N(r)〉φ (3.12)

where the crossover exponent φ is equal to

φE = ln λE
S

ln λE
ν

= 0.7162. (3.13)

This completes our analysis of the extended polymer phase.

3.1.2. θ -line (v = vθ ). Here we organize our discussion of various phases that appear along
the θ -line in the phase space (v,w), for v = vθ = 2.446 161 and for various values of w.

For x = x∗(vθ ) = 0.109 683 and w < wθ(t), RG iterations lead to the fixed point

(A,B,A1, A2, B1)
∗ = (Aθ , Bθ , 0, 0, 0) (3.14)

which means that for small values of w the polymer remains desorbed, in the solution, in the
form of the θ -chain. On the other hand, for w > wθ(t) critical fugacity xc(vθ ,w, t) is less
then x∗(vθ ), and the relevant fixed point is again

(
0, 0, A2D

E , 0, 0
)

which describes an adsorbed
two-dimensional SAW (as in the case v < vθ ).

At the critical value w = wθ(t), and x still equal to x∗(vθ ), the RG parameters flow
towards the new fixed point

(A,B,A1, A2, B1)
∗ = (Aθ , Bθ ,A1θ , A2θ , B1θ ) (3.15)

whose coordinates A1θ , A2θ and B1θ depend on the value of t, and accordingly there are five
possible situations that should be analysed.

First, for 0 � t < t∗1 = 0.155 3901, the new fixed point is

(A,B,A1, A2, B1)
∗ = (

Aθ,Bθ ,A
2D
E , 0, 0

)
(3.16)

that controls the coexistence between the θ -chain in the bulk and the adsorbed two-dimensional
SAW.

Second, we find the fixed point

(A,B,A1, A2, B1)
∗ = (Aθ , Bθ , 0.5234, 0.1637, 0.0305) (3.17)

for the critical value of the interaction t = t∗1 , with four eigenvalues larger than 1—the two
bulk values λθ

ν and λθ
α , and the two surface eigenvalues λθ

S1 = 3.962 91, and λθ
S2 = 1.283 83,

which brings about

φθ = ln λθ
S1

ln λθ
ν

= 0.6357. (3.18)

Third, in the interval between the two critical values of the interaction parameter
t, t∗1 < t < t∗2 = 0.657 3781, the new fixed point is

(A,B,A1, A2, B1)
∗ = (Aθ , Bθ , 0.192 65, 0.447 13, 0.132 446) (3.19)

for which, in addition to the relevant bulk eigenvalues, there is only one surface relevant
eigenvalue λθ

S = 3.663 797, and the crossover exponent is equal to

φθ = ln λθ
S

ln λθ
ν

= 0.5995. (3.20)
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Fourth, for the second critical t∗2 , the RG parameters flow towards the symmetric fixed
point

(A,B,A1, A2, B1)
∗ = (Aθ , Bθ ,Aθ,Aθ , Bθ ) (3.21)

where, as in the case of the first critical value t∗1 , one finds two relevant surface eigenvalues
λθ

S1 = 5.368 208 and λθ
S2 = 1.718 244, wherefrom one obtains the crossover exponent

φθ = ln λθ
S1

ln λθ
ν

= 0.7758. (3.22)

Fifth, for t∗2 < t < 1 the following fixed point:

(A,B,A1, A2, B1)
∗ = (Aθ , Bθ , 0, 0,∞) (3.23)

is reached. By keeping the dominant terms on the right-hand side of the RG equations (A.1)–
(A.3), for the surface parameters A1, A2 and B1 (see appendix A), the RG equations attain the
approximate form

A′
1 ≈ (

128A2
θ + 124A3

θ + 292A4
θ + 264A2

θBθ + 944A3
θBθ + 320AθB

2
θ

)
A2

1B
4
1 = c1A

2
1B

4
1

B ′
1 ≈ (

472A4
θ + 1452A3

θBθ + 1452A2
θB

2
θ + 4308AθB

3
θ

)
A1B

5
1 = c2A1B

5
1 (3.24)

A′
2 ≈ c3A2

where c1 ≈ 6.26, c2 ≈ 89.32 and c3 ≈ 0.127. Introducing the new variable y1 = B1A
1/4
1 we

obtain the tractable form of the approximate RG equations

A′
1 = c1y

4
1A1 y ′

1 = c
1/4
1 c2y

6
1 A′

2 = c3A2 (3.25)

which have the fixed point
(
0, 0, y∗

1 = c
−1/20
1 c

−1/5
2

)
. Linearizing these RG equations in the

vicinity of the fixed point, one relevant eigenvalue λθ
S = 6 is found, with the corresponding

crossover exponent φθ

φθ = ln λθ
S

ln λθ
ν

= 0.8272. (3.26)

3.1.3. Semi-compact regime (v > vθ ). For values of the monomer–monomer interaction
parameter v larger than vθ , and for the fugacity x equal to the bulk critical value x∗(v), the
bulk RG parameters (A,B) flow towards (0,∞), while the critical behaviour of the surface
RG parameters (A1, A2, B1) depends on the values of both surface interaction parameters w

and t. In particular, for any value of t between 0 and 1, there is a critical value wc(t, v) such
that (A1, A2, B1) flows towards (0, 0, 0), for w < wc(t, v), whereas for w precisely equal to
wc(t, v) one observes

(A,B,A1, A2, B1) →
{(

0,∞, A2D
SAW, 0, 0

)
vθ < v < vθ + ε

(0,∞, 0, 0,∞) v > vθ + ε
(3.27)

for t < t∗ ≈ 0.156, and

(A,B,A1, A2, B1) → (0,∞, 0, 0,∞) (3.28)

for t > t∗ and all v > vθ .
The fixed points (0,∞, 0, 0, 0),

(
0,∞, A2D

SAW, 0, 0
)

and (0,∞, 0, 0,∞), correspond to
the desorbed semi-compact polymer chain (globule), to the coexistence between the globule
in the bulk and the adsorbed 2D polymer and to the adsorbed globule, respectively. Finally,
for values of the parameter w larger than the critical value wc(t, v), the critical fugacity
xc = x∗(v,w, t) is smaller than its bulk critical value x∗(v), and the RG parameters iterate
towards the fixed point

(
0, 0, A2D

SAW, 0, 0
)
, which corresponds to the fully adsorbed polymer.
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The adsorbed globule phase can be analysed by keeping the dominant terms on the right-
hand side of the RG equations (3.1), (3.2) and (A.1)–(A.3), in the vicinity of the fixed point
(0,∞, 0, 0,∞). Accordingly, one can obtain the following approximate equations:

A′ ≈ 320A3B6 B ′ ≈ 4308A2B8 A′
1 ≈ 320AA2

1B
2B4

1

A′
2 ≈ 44AA3

1BB3
1 B ′

1 ≈ 4308AA1B
3B5

1 .
(3.29)

Introducing new variables

y = ABz y1 = A1/A y2 = Aq/A2 y3 = B1A
z (3.30)

where

z =
√

73 − 5

12
q = 19 +

√
73

12
(3.31)

equations (3.29) transform into the more tractable form

A′ = 320A3−zy6 y ′ = 320z4308y8+6z (3.32)

y ′
1 = y2

1y
4
3

y4
y ′

3 = 320z4308y1y
6z+3y5

3 (3.33)

y ′
2 = 320q

44

y6q−1

y3
1y

3
3

. (3.34)

The new equations (3.32) have the fixed point A∗ = 0, y∗ = (4308 × 320z)−1/(7+6z), with
one relevant bulk eigenvalue λG

ν = 8 + 6z = (11 +
√

73)/2 (see [6]). Inserting y∗ into
equations (3.33) one finds that corresponding equations for the fixed point (y∗

1, y
∗
3 ) are mutually

linearly dependent. More precisely, the only fact that springs from these equations is the
relation

y∗ = (y∗
1 )1/4y∗

3 . (3.35)

For various values of t, large enough v and corresponding bulk critical fugacity x∗(v), and
the critical value wc(t, v), point (y1, y3) tends to different fixed points (y∗

1 , y∗
3 ), but the above

relation stays satisfied. Obviously, knowing (y∗
1 , y

∗
3 ), from equation (3.34) one can calculate

the fixed value y∗
2 , which is also different for various t and v, but on the other hand is in

excellent agreement with the value obtained via explicit iteration of the expression Aq/A2.
Linearizing equations (3.33), (3.34) around the corresponding fixed point (y∗

1 , y∗
2 , y∗

3 ) the
second relevant eigenvalue λG

S = 6 is found, so that the crossover exponent φ is equal to

φG = ln 6

ln
(

11+
√

73
2

) = 0.786. (3.36)

This result is in agreement with the value estimated via direct numerical analysis, performed
using equations (2.14) and (2.15), as explained in section 2. One should also observe that the
value of φG obtained is slightly larger than d2D

f

/
d3D

f = 0.7781, which has been predicted in
[5] for SAW in the compact phase. Of course, due to the topological frustration, SAW on
the 3D b = 3 Sierpinski fractal lattice cannot, even for large monomer–monomer interaction,
have a compact configuration (see [6]). Instead, it is in the semi-compact phase, in which
its fractal dimension is less than the fractal dimension of the lattice (although larger than the
fractal dimension of SAW for v � vθ ).
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3.2. 3D b = 4 SG fractal

As the scaling parameter b increases, the number of possible polymer configurations on the 3D
SG fractal lattices quickly grows. The RG equations, for b = 4, for the bulk RG parameters A

and B have been found and analysed by Maričić and Elezović-Hadžić (see [8] and appendix B).
The conclusion has been reached that qualitatively the physical picture of the polymer
behaviour in the bulk, for b = 4, is similar to the cases b = 2 and b = 3. There are three
possible phases in which polymer can reside, which we review in the following paragraph.

For small values of the monomer–monomer interaction v < vθ = 2.331 87, the polymer
is in the swollen state. The fixed point (A,B)∗ = (AE,BE) = (0.2899, 0.0122) is reached
for any v < vθ and for the corresponding critical fugacity x = x∗(v). Linearizing the
RG equations around this fixed point one gets the single relevant eigenvalue λE

ν = 8.6924,
and the concomitant critical exponent ν is equal to νE = ln b/ln λE

ν = 0.6410. On the
other hand, the low-temperature fixed point (A,B)∗ = (AG,BG) = (0, 22−1/3) is reached
when the RG iteration starts with v > vθ . In this case, there is one relevant eigenvalue
λG

ν = 16, and the end-to-end critical exponent is νG = 1/2. The fractal dimension of the chain
d

poly
f = 1/νG = 2 is less than the fractal dimension of the lattice df = ln 20/ln 4 ≈ 2.16.

This means that the polymer is in the semi-compact phase for strong monomer–monomer
interactions, as in the b = 3 case, and in contrast to the cases of the polymer on the
b = 2 fractal and on the Euclidean lattices. Finally, when v = vθ , the tricritical fixed
point (A,B)∗ = (Aθ, Bθ ) = (0.1929, 0.3388), that corresponds to the collapse transition, is
reached. In this case there are two relevant eigenvalues, λθ

ν = 15.4230 and λθ
α = 5.5357.

Consequently, the critical exponent ν is equal to νθ = ln b/ln λθ
ν = 0.5067. In addition, we

have obtained the specific heat critical exponent α = 0.4012 > 0 which reveals the singular
behaviour, which was observed in the case b = 2 but not in the case b = 3.

Recursion relations for the surface RG parameters A1, A2, and B1 are cumbersome (each
of the corresponding equations has more than 3000 terms) and we are not going to quote them
here (but they are available upon request from the authors). Detailed numerical analysis of
these RG equations shows that, depending on the value of interaction parameters v,w and t,
the following phases and the corresponding fixed points are accessible:

• extended desorbed phase, (AE,BE, 0, 0, 0), for v < vθ and w < wc(t, v),
• semi-compact desorbed phase, (0, BG, 0, 0, 0), for v > vθ and w < wc(t, v),
• desorbed θ -chain, (Aθ, Bθ , 0, 0, 0), for v = vθ and w < wθ(t),
• fully adsorbed chain,

(
0, 0, A2D

SAW, 0, 0
)
, for w > wc(t, v), where A2D

SAW = 0.5063 is the
fixed point for the 2D b = 4 SG fractal (see [9]),

• coexistence of the globule in the bulk and the 2D adsorbed polymer chain,(
0, BG,A2D

E , 0, 0
)
, for vθ < v < vθ + ε (where ε is a small positive number whose

specific value depends on t) and w = wc(t, v),
• surface attached extended chain, special symmetric fixed point, (AE,BE,AE,AE,BE),

for v < vθ and w = wc(t, v), with the relevant eigenvalues λE
ν and λE

S = 4.4533 that give
the crossover exponent φE = ln λE

S

/
ln λE

ν = 0.6907,
• surface attached globule, (0, BG, 0, 0, BG), for v > vθ + ε and w = wc(t, v), with the

relevant eigenvalues λG
ν and λG

S = 9 and φG = 0.7924,
• surface attached θ -chain, multi-critical point (Aθ, Bθ ,A1θ , A2θ , B1θ ), for v = vθ and

w = wθ(t), with

(A1θ , A2θ , B1θ ) =



(0.2275, 0.3659, 0.0433) t < t∗

(Aθ,Aθ, Bθ ) t = t∗ = 0.9577
(0, 0, 0.3643) t∗ < t < 1

(3.37)
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Table 1. Fixed points and critical exponents ν and φ for different self-avoiding walk phases on
3D Sierpinski fractals, obtained via the exact renormalization group approach. Values for the bulk
fixed point (A∗, B∗) and the critical exponent ν for b = 2 and 3 fractals were obtained in [7] and
[6] respectively, whereas the surface bulk point (A∗

1, A∗
2, B

∗
1 ) and the crossover exponent φ were

previously known for the b = 2 fractal only [5].

b A∗ B∗ νE A∗
1 A∗

2 B∗
1 φE

Extended chain phase
2 0.4294 0.0499 0.6740 0.4294 0.4294 0.0499 0.7481
3 0.3491 0.0239 0.6542 0.3491 0.3491 0.0239 0.7162
4 0.2899 0.0122 0.6411 0.2899 0.2899 0.0122 0.6907

b A∗ B∗ νθ A∗
1 A∗

2 B∗
1 φθ

θ -chain
2 1/3 1/3 0.5923 0.4477 0.4528 0.0815 0.6264
3 0.2071 0.4307 0.5072 0.5234 0.1637 0.0305 0.6357

0.1926 0.4471 0.1324 0.5995
0.2071 0.2071 0.4307 0.7758
0 0 ∞ 0.8272

4 0.1929 0.3388 0.5067 0.2275 0.3659 0.0433 0.5811
0.1929 0.1929 0.3388 0.7782
0 0 0.3643 0.8301

b A∗ B∗ νG A∗
1 A∗

2 B∗
1 φG

Globular phase
2 0 22−1/3 1/2 0 0 22−1/3 0.7925
3 0 ∞ 0.4819 0 0 ∞ 0.7860
4 0 22−1/3 1/2 0 0 22−1/3 0.7925

for which one finds

λθ
S =




4.9036 t < t∗

8.4078 t = t∗

9 t∗ < t < 1
and φθ =




0.5811 t < t∗

0.7782 t = t∗

0.8031 t∗ < t < 1.

(3.38)

In the last part of this section we summarize, in table 1, the numerical results obtained via
the exact RG approach, for the 3D SG fractals b = 2, 3, 4, and provide the relevant discussion
of the pertinent phase diagrams. One should note that we first give the fixed point values of the
bulk parameters A∗ and B∗ and the accompanying end-to-end critical exponent ν. For each b
there are three fixed points, which correspond to the three bulk phases—the extended polymer
phase, the θ -chain phase and the globular (collapsed) phase. Furthermore, for a given b,
one may observe that A∗ decreases, while B∗ increases, with increasing monomer–monomer
interaction v, and consequently ν decreases. On the other hand, when b increases ν decreases
for the extended phase and the θ -chain phase, whereas in the case of the globular phase ν

does not display a monotonic behaviour. Besides, in the globular phase, for b = 3 and b = 4
the exponent ν is larger than the reciprocal of the fractal dimension of the underlying lattices,
which implies that the globular phase is not compact. This is in contrast to the b = 2 case (as
well as in contrast to the Euclidean lattices), where ν = 1/df .

In table 1 we also give the fixed point values of the surface RG parameters A∗
1, A

∗
2, B

∗
1

and the corresponding values of the crossover exponent φ, for the unbinding transitions from
adsorbed polymer phase to various desorbed phases. The relevant phase diagram is given in
figure 4, for the b = 3 SG fractal (a similar phase diagram for b = 2 was obtained in [5],
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Figure 4. Phase diagram in the case of the b = 3 SG fractal for two different values of the
interaction parameter t: (a) t = 0.1 and (b) t = 0.8. For t = 0.1, close to the multi-critical point
on the critical line exists a small region (vθ < v < vθ + ε) of the first-order phase transitions
(where the globule in the bulk and the adsorbed chain coexist) which ends at the point depicted by
the small dash. Beyond the dash (v > vθ + ε) the transition at the critical line is continuous, and
corresponds to the attached semi-compact chain.

whereas in the course of this work we obtained a diagram of the same type for b = 4). In
figure 4, the unbinding transitions are represented by the curve that separates the ‘adsorbed
chain’ region from the ‘desorbed chain’ regions. On this curve lies the multi-critical point, so
that the part of the curve for smaller values of the parameter v (v < vθ ) corresponds to the
extended attached chain phase, while for larger values of v (v > vθ ) the curve corresponds
to the attached semi-compact phase. The fixed point that defines the extended attached chain
phase is a symmetric special fixed point, that is, A∗

1 = A∗
2 = A∗ and B∗

1 = B∗, with the
corresponding crossover exponent which decreases with increasing scaling parameter b (see
the top part of the table 1). Here we would like to mention that this behaviour of the crossover
exponent will be demonstrated for larger b as well, using the MCRG method (see the next
section).

Continuing our discussion guided by the results presented in table 1, we focus now on
the attached globular phase (v > vθ ). For this phase, the fixed point parameters satisfy the
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relations A∗
1 = A∗

2 = A∗ = 0 and B∗
1 = B∗, where B∗ = 22−1/3 for b = 2 and b = 4, while

B∗ = ∞ for b = 3. It is interesting to observe that the critical exponents ν and φ are the same
for the fractals with b = 2 and b = 4, while for b = 3 these two exponents are somewhat
smaller. Besides, we should point out that only for b = 2 is the crossover exponent φ equal
to the ratio d2D

f

/
d3D

f which is related to the fact that only for b = 2 is the globular phase
compact. Finally, by comparing the values of the crossover exponent φ, we may observe that
in the attached globular phase the number of adsorbed monomers is relatively larger than in
the corresponding Euclidean phases (φ = 2/3).

Results obtained for the multi-critical points for the fractals with b = 3 and b = 4 (see
the middle right part of table 1) appear to be dependent on the parameter t that describes the
energy of a monomer in the layer adjacent to the adsorbing boundary. This is manifested by
several possible fixed points, in contrast to the case b = 2. Particularly, the position of the
multi-critical point, as well as the shape of the critical line wc(v) (that separates the adsorbed
phase from the desorbed phases), depend on the particular value of t (see figure 4). For the
case b = 3 there are four fixed points that correspond to the surface attached θ -chain, two
of which (the first and the third one) appear to be very repulsive (each with four eigenvalues
larger than 1) and can be approached for the critical values t∗1 = 0.1553 and t∗2 = 0.6573 of
the parameter t. The latter fixed point appears to be symmetric (A∗

1 = A∗
2 = A∗ = Aθ and

B∗
1 = B∗ = Bθ ) and accordingly is the only point that describes the isotropic chain. The

other two fixed points, the second and the fourth, are less repulsive (each of them has three
eigenvalues larger than 1), and can be reached for any value of the parameter t in the intervals
t∗1 < t < t∗2 and t∗2 < t < 1, respectively.

In contrast to the expectation, that may be formed on the findings presented for the cases
b = 2 and b = 3, that the number of attainable multi-critical points will continue to increase
with increasing b, in the b = 4 case only three multi-critical points can be reached. Indeed, for
b = 4 there is only one critical value t∗ = 0.9577 of the parameter t such that for 0 < t < t∗

and for 1 > t > t∗, two different nonsymmetric fixed points (one for each of the two intervals)
with three eigenvalues larger than 1 are reached. On the other hand, a highly repulsive
symmetric point, with four eigenvalues larger than 1, can be approached only for t = t∗. Each
one of the three multi-critical points describes its pertinent surface attached θ -chain which is
manifested by the facts that A∗

2 > A∗
1 > A∗ = Aθ and B∗

1 < Bθ for t < t∗, A∗
1 = A∗

2 = 0 and
B∗

1 < Bθ for t > t∗, meaning that the corresponding two phases are anisotropic, whereas for
the critical value t = t∗ the surface attached θ -chain is isotropic. Finally, one can note that
the crossover exponent φ increases with t (which was not the case for b = 3), and moreover
that the particular values of φ for b = 3 and b = 4, in their relevant intervals 1 > t � t∗2 and
1 > t � t∗, are rather close.

4. Monte Carlo renormalization group calculation

In this section, we are going to apply the Monte Carlo renormalization group method to
calculating the critical exponents ν and φ for the 3D SG fractals with b � 5. First, we
shall present the MCRG calculation of the critical exponent ν. In order to find the SAW
critical exponent ν, in the bulk phase, we should determine the nontrivial fixed points of the
RG transformations (2.8) and (2.9), and then we should solve the corresponding eigenvalue
problem of the linearized RG transformations, that is, we should solve the equation∣∣∣∣∣

(
∂A′
∂A

− λν

)
∂A′
∂B

∂B ′
∂A

(
∂B ′
∂B

− λν

)
∣∣∣∣∣
∗

= 0 (4.1)
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where the asterisk means that all derivatives should be taken at the corresponding fixed point
and the superscript prime is used instead of the superscript (r + 1). Knowing the relevant
eigenvalue λν , we can determine the critical exponent ν using the formula (3.4). To learn
a specific value of ν, for a given b, one should first find the coefficients a(NA,NB), and
b(NA,NB) in the RG equations (2.8) and (2.9). As was detailed in the previous sections, it
has been possible to calculate the exact values of these coefficients only for b � 4. Thus, to
get an entire sequence of values of ν for b � 5, we are going to circumvent the problem of
explicit determination of the exact coefficients in the RG equations by applying the MCRG
technique.

The MCRG method allows direct calculation of the derivatives that appear in the
eigenvalue equation (4.1). It starts by locating the bulk nontrivial fixed points, which requires,
at the beginning, implementation of a MC simulation of the SAWs for a chosen initial set of
values (A0, B0). In other words, we let the walker start his walking, at one fixed corner of
the fractal generator, and record the other corner, at which it leaves the generator, together
with recording the total numbers, NA and NB , of crossings of the A, or B, type through the
elementary tetrahedron. The SAW walker crosses an elementary tetrahedron in the A (or B)
way (see figure 3) with the weight (probability) A0 and B0, respectively. We repeat this MC
simulation L times, for the same set (A0, B0). Thus we find how many times the walker has
passed through the generator in the A (or B) way and by dividing the corresponding numbers
by L we get the values of the functions (2.8) and (2.9), denoted here by A′(A0, B0) and
B ′(A0, B0).

In this way we get the value of the sums (2.8) and (2.9) without specifying the coefficients
a(NA,NB), and b(NA,NB). Then, the subsequent values An and Bn (n � 1), at which the MC
simulation should be performed, can be found by using the generalized ‘homing’ procedure
[10–12], which can be terminated at the stage when the differences An − An−1 and Bn − Bn−1

become less than the statistical uncertainties associated with An−1 and Bn−1, respectively.
Consequently, the fixed point (A∗, B∗) can be identified with the last value (An, Bn) found in
this procedure.

Having learnt the fixed point, we need to solve the eigenvalue equation (4.1) in order to
find the critical exponent ν via formula (3.4). Thus, we should find the partial derivatives
∂Y ′/∂X (where X,Y ∈ {A,B}) at the fixed point. For instance, starting with (2.8) (in the
notation in which the superscript prime is used instead of the superscript (r + 1)) and by
differentiating it with respect to A we get

∂A′

∂A
=

∑
NA,NB

NAa(NA,NB)(A)NA−1(B)NB . (4.2)

Treating now A′ as the grand canonical partition function, for the ensemble of all possible
SAWs that start at one fixed corner of the fractal generator and leave it at the other, we can
write the corresponding ensemble average

〈NA(A,B)〉A′ = 1

A′
∑

NA,NB

NAa(NA,NB)(A)NA(B)NB (4.3)

which can be directly measured in a MC simulation. Finally, comparing the last two equations,
we can express one of the requisite derivatives in terms of the measurable quantity

∂A′

∂A
= A′

A
〈NA(A,B)〉A′ . (4.4)

In a similar way one can find three additional derivatives, so that we can write the general
formula

∂Y ′

∂X
= Y ′

X
〈NX〉Y ′ (4.5)
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Table 2. The MCRG (2 � b � 40) results obtained in this work for the bulk fixed point value
parameters AE and BE , and the SAW critical exponents νE and φE for the 3D SG family of fractals.
Each entry of the table has been obtained by performing 105 requisite Monte Carlo simulations.

b (AE, BE) νE φE

2 (0.4311 ± 0.0009, 0.0505 ± 0.0023) 0.6742 ± 0.0051 0.7484 ± 0.0152
3 (0.3421 ± 0.0004, 0.0245 ± 0.0015) 0.6543 ± 0.0021 0.7148 ± 0.0037
4 (0.2898 ± 0.0004, 0.0122 ± 0.0020) 0.6414 ± 0.0012 0.6901 ± 0.0036
5 (0.2560 ± 0.0004, 0.0067 ± 0.0019) 0.6315 ± 0.0010 0.6707 ± 0.0028
6 (0.2319 ± 0.0003, 0.0038 ± 0.0012) 0.6239 ± 0.0009 0.6496 ± 0.0024
7 (0.2148 ± 0.0003, 0.0020 ± 0.0018) 0.6169 ± 0.0006 0.6333 ± 0.0019
8 (0.2016 ± 0.0003, 0.0012 ± 0.0026) 0.6130 ± 0.0005 0.6198 ± 0.0016
9 (0.1912 ± 0.0004, 0.0007 ± 0.0008) 0.6087 ± 0.0006 0.6023 ± 0.0017

10 (0.1829 ± 0.0003, 0.0005 ± 0.0023) 0.6048 ± 0.0003 0.5894 ± 0.0013
12 (0.1703 ± 0.0004, 0.0001 ± 0.0035) 0.5987 ± 0.0003 0.5686 ± 0.0012
15 (0.1581 ± 0.0001, –) 0.5933 ± 0.0002 0.5385 ± 0.0010
17 (0.1526 ± 0.0001, –) 0.5899 ± 0.0002 0.5213 ± 0.0010
20 (0.1462 ± 0.0001, –) 0.5869 ± 0.0002 0.5014 ± 0.0012
25 (0.1399 ± 0.0001, –) 0.5817 ± 0.0002 0.4666 ± 0.0008
30 (0.1353 ± 0.0001, –) 0.5804 ± 0.0002 0.4325 ± 0.0008
35 (0.1327 ± 0.0001, –) 0.5759 ± 0.0001 0.4275 ± 0.0007
40 (0.1305 ± 0.0001, –) 0.5755 ± 0.0001 0.3765 ± 0.0007

where X and Y stand for any pair of quantities from the set {A,B}. In this way we can learn,
through the MC simulations, the partial derivatives that appear in the eigenvalue equation (4.1).
Consequently, calculating the above derivatives at the fixed point and solving the eigenvalue
equation (4.1) we obtain

λν = 〈NA〉∗A′ + 〈NB〉∗B ′

2
+

√( 〈NA〉∗A′ − 〈NB〉∗B ′

2

)2

+ 〈NA〉∗B ′ 〈NB〉∗A′ (4.6)

which means that λν has been expressed in terms of quantities that are all measurable through
the Monte Carlo simulations. Accordingly, we can learn the value of the critical exponent
ν through formula (3.4). We have applied this technique for a sequence of 3D SG fractals
and in table 2 we present our findings for 2 � b � 40, for the extended chain (in the bulk
phase) fixed point (AE,BE) together with the related critical exponent νE . As one can see
from table 2 the fixed point values for BE decrease much faster then the values for AE , when b
increases. This means that we may neglect the parameter B(r) (compared with A(r)) for larger
b, that is for b > 12. In order to estimate the influence of the parameter B(r) on the values
of the critical exponent ν, we calculated, by the MCRG method, the critical exponent ν for
b = 12 with BE = 0. We obtained the following result ν = 0.5989 ± 0.0003, which deviates
0.03% from the value ν = 0.5987 ± 0.0003 (see table 2) found using the nonzero value of
B(r). Concerning the analogous results for the collapse transitions (θ critical point) in the bulk
phase, we have to point out that the corresponding point (Aθ, Bθ ) cannot be located because
the initial part of the applied technique (the ‘homing procedure’) does not possess the needed
convergence.

We now apply the MCRG method to find the crossover critical exponent φ (which
determines the number of adsorbed monomers) for the polymer phase, on the 3D SG fractals,
described by the symmetric fixed point (3.8). To this end, we have to solve the eigenvalue
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problem for the second part (that starts with the third equation) of the RG transformations
(2.8)–(2.12), which reduces to solving the equation∣∣∣∣∣∣∣∣

( ∂A′
1

∂A1
− λφ

) ∂A′
1

∂A2

∂A′
1

∂B1
∂A′

2
∂A1

( ∂A′
2

∂A2
− λφ

) ∂A′
2

∂B1
∂B ′

1
∂A1

∂B ′
1

∂A2

( ∂B ′
1

∂B1
− λφ

)
∣∣∣∣∣∣∣∣

∗

= 0. (4.7)

Here the asterisk indicates that all derivatives should be taken at the symmetric fixed point
(AE,BE,AE,AE,BE). The above equation gives, in general, three eigenvalues for each b,
but in practice it turns out that only one of them (to be henceforth denoted by λφ) is relevant.
Knowing λφ we can determine the critical exponent φ through the formula

φ = ln λφ

ln λν

. (4.8)

Hence, in an exact RG evaluation of φ one needs to calculate partial
derivatives of sums (2.10)–(2.12), and thereby one should find the coefficients
a1

(
NA,NB,NA1 , NA2 , NB1

)
, a2

(
NA,NB,NA1 , NA2 , NB1

)
and b1

(
NA,NB,NA1 , NA2 , NB1

)
by

an exact enumeration of all possible SAWs for each particular b, which has been accomplished
for fractals with b � 4. However, for b � 5, as in the case of the bulk phase, the exact
enumeration turns out to be a formidable task. We have circumvented this problem by applying
the MCRG method. Within this method, the first step would be to locate the symmetric fixed
point. Fortunately, because of the structure of the symmetric fixed point, the results given in
table 2 provide the complete information for this fixed point for a sequence of fractals with
2 � b � 40. The next step in the MCRG method consists of finding λφ , without explicit
calculation of the RG equation coefficients.

To solve the eigenvalue problem (4.7), so as to learn λφ , we need to find the
requisite partial derivatives. These derivatives can be related to various averages of
the numbers NA1 , NA2 and NB1 , of different SAW parts (of the types A1, A2 and B1)
within a SAW path. Indeed, we may apply relation (4.5) where here X and Y stand for
any pair of quantities from the set {A1, A2, B1}. Therefore, to calculate the derivatives
(4.5) for X,Y ∈ {A1, A2, B1} at the symmetric fixed point, one needs the nine averages(〈
NA1

〉∗
A′

1
,
〈
NA2

〉∗
A′

1
,
〈
NB1

〉∗
A′

1
,
〈
NA1

〉∗
A′

2
,
〈
NA2

〉∗
A′

2
,
〈
NB1

〉∗
A′

2
,
〈
NA1

〉∗
B ′

1
,
〈
NA2

〉∗
B ′

1
,
〈
NB1

〉∗
B ′

1

)
, which are all

measurable through MC simulations. Solving numerically the eigenvalue equation (4.7) we
obtain λφ , and, finally, using relation (4.8), we find the values of the critical exponent φ (in
the extended polymer phase), which are presented in table 2, and discussed in the following
paragraph.

First, we would like to compare the results obtained, via the exact RG approach and
through the MCRG technique, for the first three members (b = 2, 3, 4) of the SG fractal
families (given in tables 1 and 2, respectively). One can observe that the MCRG results
for the critical exponents ν and φ deviate at most 0.2% from the exact results. This very
good agreement provides confidence in applying the MCRG approach for a longer sequence
of fractals (5 � b � 40). For the sake of a better assessment of the global behaviour
of the critical exponents ν and φ, as a function of the fractal scaling parameter b, we
depict the corresponding values (from tables 1 and 2) in figures 5 and 6, respectively. One
can see that ν, being a monotonically decreasing function of b, crosses the narrow range
determined by the predictions made for the three-dimensional Euclidean lattices, starting with
ν = 7/12 = 0.5833 [13], passing through the values 0.5850 [14] and 0.5874 [15], and ending
with ν = 0.5882 [16]. Crossing the interval of the possible Euclidean values for the exponent
ν occurs at the scaling fractal parameter b = 20. Interestingly, one may observe from figure 6
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Figure 5. Data for the end-to-end critical exponent ν for the 3D SG family of fractals. The
exact RG results are represented by open triangles, while the MCRG results are depicted by solid
triangles. The shaded horizontal band represents the region of estimated values (found in the
literature) for the three-dimensional Euclidean critical exponent ν. The error bars related to the
MCRG data are not depicted in the figure since in all cases they lie within the corresponding
symbols.
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Figure 6. Data for the adsorption critical exponent φ for the 3D SG family of fractals. The
exact RG results are represented by open triangles, while the MCRG results are depicted by solid
triangles. The dashed horizontal line represents the putative universal Euclidean value 1/2 of the
crossover critical exponent φ. The error bars related to the MCRG data are not depicted in the
figure since in all cases they lie within the corresponding symbols.

that the exponent φ, being a monotonically decreasing function of b, crosses the estimated
three-dimensional Euclidean value φ = 1/2 [17] also at b = 20.

5. Conclusion

In this paper, we studied the adsorption phenomenon of a linear polymer, in good and bad
solvents, on impenetrable boundaries of fractal containers modelled by the 3D SG family of
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fractals. Each member of the 3D SG fractal family has a fractal impenetrable 2D adsorbing
boundary (which is, in fact, a 2D SG fractal surface) and can be labelled by an integer b
(2 � b � ∞). For the first three members (b = 2, 3, 4) of the 3D fractal family we have
performed exact RG analysis. This analysis enabled us to establish the phase diagrams (for
fractals with b = 3 and b = 4; the b = 2 case was studied previously [5]), which turned
out to be very rich from the physical point of view. Indeed, the phase diagrams disclose six
different polymer phases that merge together at a multi-critical point, whose nature for b = 3
and b = 4, as well as the shape of the critical line that separates adsorbed from desorbed
phases, depends on the value of the parameter t (associated with the monomer energy in the
layer adjacent to the adsorbing boundary), which was not the case for b = 2. By analysing the
obtained phase diagrams we may conclude that similar diagrams can be expected for b > 4,
but finding their exact pictures presently is not feasible.

By applying the exact and Monte Carlo renormalization group (MCRG) method, we
calculated the critical exponents ν (associated with the mean-squared end-to-end distance of
polymers) and φ (associated with the number of adsorbed monomers) for a sequence of fractals
with 2 � b � 4 (exactly) and 2 � b � 40 (Monte Carlo). The reliability of the MCRG results
is manifested by the fact that in the cases b = 2, 3, 4, the MCRG results for ν and φ deviate at
most 0.2% from the exact results. Unfortunately, it was possible to implement this powerful
(MCRG) method only in the case of the extended polymer phase.

We find that, in the region studied, both ν and φ monotonically decrease with increasing
b (that is, with increase of the container fractal dimension df ), and the very interesting fact
that both functions, ν(b) and φ(b), cross the estimated Euclidean values at, approximately, the
same value of the scaling parameter (b ≈ 20). Here we would like to point out that in the case
of the 2D SG fractals both exponents ν and φ also cross the corresponding Euclidean values,
but not at the same value of b (at b ≈ 27 for ν [11], while at b ≈ 6 for φ [18]). Accordingly,
one may pose the question as to why in both cases, d = 2 and d = 3, critical exponents, ν and
φ, decrease with increasing fractal dimension df , that is with increasing scaling parameter b.
This intriguing question has been successfully attacked by Dhar [19], within the finite-size
scaling approach, in the case d = 2. The corresponding predictions have been confirmed [11]
by the MCRG technique of the type used in this paper. Hence, results reported in this paper
make it challenging to generalize Dhar’s approach in the case of the three-dimensional SG
fractals.

On the whole, our findings should be useful in making the corresponding 3D models of the
polymer adsorption phenomena in porous media. Besides, our results may prove beneficial in
constructing theories of the polymer adsorption phenomena for the homogeneous 3D lattices,
where so far, to the best of our knowledge, an exact approach has not been made.
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Appendix A. RG equations for the surface parameters in the case of the
three-dimensional b = 3 SG fractals

In this appendix, we give the exact RG equations for the surface RG parameters A1, A2 and B1

in the case of the 3D b = 3 SG fractal. We have found that these equations have the following
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form:

A′
1 =
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F i
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2B
3
1 + 192A1A

2
2B

3
1

F 1
B1

= B
(
3A2

1A
3
2 + 8A3

1A
3
2 + 6A3

1A
2
2B1 + 44A3

1A2B
2
1 + 66A2

1B
3
1

)
+ B3 (

44A1A
3
2 + 44A2

1A
3
2 + 22A5

2 + 320A3
1A

2
2B1 + 66A4

2B1

+ 120A1A
4
2B1 + 312A2

1A2B
2
1 + 312A3

1A2B
2
1 + 160A1A

3
2B

2
1

+ 968A3
1B

3
1 + 968A1A

2
2B

3
1 + 4308A1B

5
1

)
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F 2
B1

= A3
1A2 + 7A4

1A2 + 8A5
1A2 + 15A4

1B1 + 8A5
1B1 + B

(
6A1A

3
2

+ 12A2
1A

3
2 + 12A3

1A
3
2 + 10A1A

5
2 + 16A2

1A
2
2B1 + 60A3

1A
2
2B1

+ 24A1A
4
2B1 + 44A2

1A2B
2
1 + 176A3

1A2B
2
1 + 88A1A

3
2B

2
1

+ 132A3
1B

3
1 + 576A1A2B

4
1

)
+ B2

(
6A3

1A2 + A4
1A2

+ 54A2
1A

3
2 + 48A3

1A
3
2 + 6A5

2 + 28A1A
5
2 + 18A4

1B1

+ 48A5
1B1 + 128A2

1A
2
2B1 + 136A3

1A
2
2B1 + 18A4

2B1

+ 124A1A
4
2B1 + 432A3

1A2B
2
1 + 318A1A

3
2B

2
1 + 132A2

1B
3
1

+ 632A3
1B

3
1 + 312A1A

2
2B

3
1 + 1936A1A2B

4
1 + 1452A1B

5
1

)
F 3

B1
= 2A3

1A2 + 10A4
1A2 + 8A5

1A2 + 2A1A
3
2 + 14A2

1A
3
2 + 22A3

1A
3
2 + 18A4

1B1

+ 16A5
1B1 + 26A2

1A
2
2B1 + 74A3

1A
2
2B1 + 12A2

1A2B
2
1

+ 164A3
1A2B

2
1 + 44A2

1B
3
1 + 120A3

1B
3
1 + B

(
4A3

1A2 + 20A4
1A2

+ 16A5
1A2 + 4A3

2 + 12A1A
3
2 + 33A2

1A
3
2 + 24A3

1A
3
2 + 8A5

2

+ 36A4
1B1 + 32A5

1B1 + 72A2
1A

2
2B1 + 174A3

1A
2
2B1 + 18A4

2B1

+ 48A1A
4
2B1 + 88A2

1A2B
2
1 + 352A3

1A2B
2
1 + 66A1A

3
2B

2
1 + 66A2

1B
3
1

+ 592 A3
1B

3
1 + 312A1A

2
2B

3
1 + 1452A1B

5
1

)
F 4

B1
= 2A3

1A2 + 10A4
1A2 + 8A5

1A2 + A3
2 + 6A1A

3
2 + 17A2

1A
3
2 + 16A3

1A
3
2

+ 3A5
2 + 8A1A

5
2 + 18A4

1B1 + 16A5
1B1 + 26A2

1A
2
2B1

+ 72A3
1A

2
2B1 + 7A4

2B1 + 32A1A
4
2B1 + 44A2

1A2B
2
1

+ 202A3
1A2B

2
1 + 64A1A

3
2B

2
1 + 66A2

1B
3
1 + 230A3

1B
3
1

+ 100A1A
2
2B

3
1 + 440A1A2B

4
1 + 472A1B

5
1 .

Appendix B. RG equations for the bulk parameters in the case of the three-dimensional
b = 4 SG fractals

The exact recursion relations for the bulk RG parameters A and B in the case of the 3D b = 4
Sierpinski fractal have the following form:

A′ = A4 + 12A5 + 62A6 + 220A7 + 782A8 + 2426A9 + 12A5B + 128A6B

+ 776A7B + 3416A8B + 13 324A9B + 18A4B2 + 72A5B2 + 432A6B2

+ 2736A7B2 + 13 294A8B2 + 56 004A9B2 + 19A5B3 + 1456A6B3

+ 8704A7B3 + 48 256A8B3 + 213 968A9B3 + 36A4B4 + 688A5B4

+ 6880A6B4 + 33 264A7B4 + 173 936A8B4 + 816A5B5 + 781 456A7B7

+ 4350 864A8B7 + 2904A4B8 + 31 616A5B8 + 248 608A6B8

+ 2047 360A7B8 + 9995 376A8B8 + 70 400A5B9 + 779 584A6B9

+ 5688 896A7B9 + 13 632A6B5 + 10 369A7B5 + 562 192A8B5

+ 640A4B6 + 1792A5B6 + 32 432A6B6 + 250 672A7B6 + 1552 992A8B6

+ 7712A5B7 + 98 528A6B7 + 24 273 344A8B9 + 65 568A4B10

+ 354 336A5B10 + 2960 032A6B10 + 11 284 384A7B10 + 44 440 800A8B10

+ 139 392A5B11 + 6933 440A6B11 + 25 364 736A7B11 + 20 945 408A8B11

+ 259 424A4B12 + 3408 768A5B12 + 7491 712A6B12
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B ′ = A8 + 24A9 + 268A10 + 1624A11 + 6544A12 + 20 288A13 + 50 676A14

+ 103 904A15 + 173 050A16 + 225 108A17 + 215 392A18 + 134 968A19

+ 42 514A20 + 328A9B + 2584A10B + 13 940A11B + 56 768A12B

+ 188 356A13B + 491 496A14B + 1000 000A15B + 1539 632A16B

+ 1701 920A17B + 1192 152A18B + 397 392A19B + 36A8B2

+ 832A9B2 + 14 176A10B2 + 85 720A11B2 + 368 404A12B2

+ 1199 040A13B2 + 2954 904A14B2 + 5370 136A15B2 + 6814 424A16B2

+ 5299 288A17B2 + 1901 008A18B2 + 2112A8B3 + 17 424A9B3

+ 89 344A10B3 + 482 272A11B3 + 1965 376A12B3 + 5900 928A13B3

+ 12 721 232A14B3 + 18 817 920A15B3 + 16 698 368A16B3

+ 6662 824A17B3 + 616A6B4 + 1584A7B4 + 6388A8B4

+ 76 968A9B4 + 523 696A10B4 + 2577 592A11B4 + 9113 852A12B4

+ 23 214 816A13B4 + 40 127 080A14B4 + 41 398 192A15B4

+ 18 548 660A16B4 + 12 912A7B5 + 62 560A8B5 + 451 600A9B5

+ 2759 488A10B5 + 11 688 304A11B5 + 34 977 824A12B5

+ 70 124 768A13B5 + 82 557 440A14B5 + 41 200 784A15B5

+ 1584A6B6 + 45 056A7B6 + 296 744A8B6 + 2361 856A9B6

+ 12 623 808A10B6 + 43 429 664A11B6 + 102 376 032A12B6

+ 139 837 056A13B6 + 78 454 776A14B6 + 7744A6B7 + 133 440A7B7

+ 1858 832A8B7 + 10 467 744A9B7 + 46 337 232A10B7

+ 126 642 624A11B7 + 201 751 952A12B7 + 126 633 376A13B7

+ 17 232A5B8 + 54 192A6B8 + 950 784A7B8 + 8336 624A8B8

+ 42 390 624A9B8 + 139 673 656A10B8 + 253 941 232A11B8

+ 172 479 256A12B8 + 431 776A6B9 + 6405 824A7B9 + 32 770 448A8B9

+ 127 799 456A9B9 + 273 263 456A10B9 + 204 194 352A11B9

+ 471 328A5B10 + 4395 872A6B10 + 21 993 584A7B10

+ 107 371 568A8B10 + 262 855 104A9B10 + 199 987 864A10B10

+ 1224 960A5B11 + 17 655 616A6B11 + 76 932 128A7B11

+ 220 464 528A8B11 + 151 443 088A9B11 + 3702 272A4B12

+ 11 642 752A5B12 + 66 511 552A6B12 + 148 524 304A7B12

+ 99 652 120A8B12 + 3748 096A3B13 + 30 934 336A5B13

+ 110 065 872A6B13 + 26 465 392A7B13 + 6830 208A3B14

+ 30 509 600A4B14 + 49 942 336A5B14 + 20 614 528A3B15 + 5153 632B16.
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